利用海洋环境噪声空间特性估计浅海 海底分层结构及地声参数*

李赫1)2) 郭新毅1)† 马力1)

1) (中国科学院声学研究所,中国科学院水声环境特性重点实验室,北京 100190)

2) (中国科学院大学,北京 100049)

(2019年5月28日收到; 2019年8月13日收到修改稿)

海洋环境噪声场中包含了海洋中的诸多信息,海底地声参数是影响海洋环境噪声场空间分布的主要因 素之一.对于不同的海底分层结构,海底反射损失会根据沉积层厚度和各层声速呈现出不同的临界角和干涉 条纹结构.本文利用 Harrison 能流理论,从理想反射系数出发,分别考虑了声速、密度、衰减系数、沉积层厚 度等几种参数对无沉积层和单层沉积层中反射系数的影响,并对单层沉积层海底的反射系数进行了化简,结 合互易原理解释了反射损失条纹结构的形成机理.中国黄海某海区试验结果表明,利用海洋环境噪声空间方 向谱获得的海底反射损失,可以提取海底反射临界角和干涉条纹信息,由此可估计出海底分层结构、声速和 沉积层厚度等海底参数信息.

关键词:海洋环境噪声空间特性,海底反射损失,海底地声参数估计 PACS: 43.30.Nb, 43.30.Pc DOI: 10.7498/aps.68.20190824

1 引 言

海洋环境噪声是海洋中永恒存在的声场,主要 由风浪、降雨、舰船、海洋生物、工业等因素形成, 其中风成噪声在各个海域普遍存在,其频段覆盖几 百至几十千赫兹^[1].一方面海洋环境噪声是影响声 呐工作性能的主要因素之一,只有对其进行充分的 了解研究才能充分提高水下设备的工作性能,所以 国内外学者纷纷对海洋环境噪声进行建模研究^[2–5]. 另一方面,海洋环境噪声场中也包含了诸多水体、 海底、海面等环境信息^[6],因此利用海洋环境噪声 进行参数反演,获取海水、海底等环境信息也成为 时下的热点问题之一^[7,8].

海底地声参数反演主要分为主动反演和被动 反演两部分. Zeng 等^[9]利用爆炸声源对中国黄海 海域海底衰减系数进行反演; 李梦竹等^[10]提出了

© 2019 中国物理学会 Chinese Physical Society

一种适用于低声速沉积层的海底参数声学反演方 法. 相比于主动反演, 利用海洋环境噪声进行被动 反演无需主动发射声源信号,在实验中仅需数据接 收装置,大幅度节省了实验消耗以及工作任务,并 目对海洋生物没有任何影响. 周建波等[11] 利用矢 量水听器通过海洋环境噪声提取了声场格林函数: 江鹏飞等[12] 根据海洋环境噪声的空间指向性在不 同掠射角范围内对海底参数的敏感度不同,提出了 分步反演的方法: 骆文于 [13] 利用中国东海环境噪 声数据反演了液态半空间海底声速、密度、衰减系 数;早在1982年,布列霍夫斯基^[14]就曾利用海洋 环境噪声场的各向异性,来获取海底反射信息; Harrison 在 2002 年进一步系统地研究了海洋环境 噪声中的能流理论,利用上行波和下行波的比值提 取了海底反射损失,并对海底进行了反演[15],并利 用希尔伯特变换补全反射系数的虚部,通过计算垂 直方向的冲击响应利用漂流浮标对海底进行成像[16];

^{*} 国家自然科学基金 (批准号: 11874384) 资助的课题.

[†] 通信作者. E-mail: guoxinyi@mail.ioa.ac.cn

Siderius 等^[17]利用海洋环境噪声提取了格林函数 用来表征两点间的冲击响应,对海底分层进行成像; Muzi 等^[18,19]在 Harrison 的基础上利用互谱密度 矩阵的特性对阵元进行了理论扩展处理,提高了利 用海洋环境噪声提取的海底损失曲线的分辨率.

本文在 Harrison 能流理论基础上,从理想环 境反射系数出发,解释了不同海底参数对海底反射 损失 (bottom-loss, BL) 曲线的影响, 并利用实测 海洋环境噪声数据对海底分层结构、声速及沉积层 厚度进行估计.本文首先引入 Harrison 能流理论 估计海底反射损失的方法,分析了不同海底分层情 况下的曲线特点;然后利用简正波理论,讨论了浅 海波导中近场连续谱和远场离散谱在噪声估计海 底反射损失中的贡献;并从理想反射系数出发,分 别讨论了不同海底参数对无沉积层、单一海底沉积 层两种情况的影响,结合互易原理解释了反射损失 条纹结构的产生机理,并根据噪声获得的海底反射 损失曲线给出海底声速、沉积层厚度的估计方法; 最后介绍了 2016 年冬中国黄海某海区海上试验, 对实测海洋环境噪声数据进行处理,估计其海底分 层结构、海底声速和沉积层厚度.

2 利用海洋环境噪声垂直方向谱估计 海底反射损失

从浅海理想波导出发,假设噪声源均匀分布在 海面,利用垂直阵接收环境噪声信号,其空间结构 如图1所示.波导中的声波可分为两部分:接收阵 上方的来波称为下行波,从噪声源直达接收阵;下

方的称为上行波,经过海底一次反射后到达接收 阵.在此近场情况下不考虑多次反射,后文将给出 解释.

声速剖面为等声速的理想情况下,表面声源的 出射角θ_s、海底掠射角θ_b与接收角θ_r均相等,在此 均用掠射角θ_b表示.对于某一角频率ω下,海底反 射损失 BL 有如下定义:

$$BL(\theta_{\mathsf{b}},\omega) = -10\log_{10}\left(\left|R\left(\theta_{\mathsf{b}},\omega\right)\right|^{2}\right).$$
(1)

下文用 *BL*表示利用噪声估计出的海底反射损失, *BL*表示理想反射系数得到的海底反射损失,以便 区分.这里 *R*为平面波的海底反射系数,其幅度可 以通过波导中的上行波与下行波能量比值求得.对 垂直阵接收的信号进行波束形成以获得不同俯仰 角噪声能量,计算公式如下:

$$\left|\hat{R}\left(\theta_{\rm b},\omega\right)\right|^{2} = \frac{B\left(-\theta_{\rm b},\omega\right)}{B\left(\theta_{\rm b},\omega\right)},\tag{2}$$

其中 *B* 为波束形成得到的不同角度和角频率下的 接收能量,即垂直方向能量谱,

 $B(\theta_{b},\omega) = E(\mathbf{w}^{H}\mathbf{C}_{\omega}\mathbf{w}) = \mathbf{w}^{H}E(\mathbf{p}_{\omega}\cdot\mathbf{p}_{\omega}^{H})\mathbf{w},$ (3) 其中 E代表期望; H 为共轭转置; w 是波束形成的 加权向量; p 为对应角频率 ω 的接收数据, 在 M 阵 元接收时, 为 M 维向量; \mathbf{C}_{ω} 为噪声互谱密度矩阵.

为说明此方法计算得到 BL 的有效性, 先考虑极端情况, 假设阵元间隔为 0.2 m 的垂直阵遍布在 声速为 1500 m/s、水深为 40 m 的全海深中, 忽略 海底横波的影响, 海底参数如表 1 所列.

表 1 海水及海底声学参数

Table 1. Parameters of ocean and sub-bottom.				
介质	声速	衰减系数	对水	深度
类型	$c/{ m m}{\cdot}{ m s}^{-1}$	$lpha/{ m dB}{\cdot}\lambda^{-1}$	密度 ρ	$H/{ m m}$
海水	1500	0	1	40
沉积层	1600	0.2	1.5	3
基底	2000	0.6	2	8

互谱密度矩阵直接利用 OASES 软件中的 OASN 模块计算获得^[20], w设置为常规波束形成 加权向量.图 2(a) 为根据理想情况下真实反射系 数公式求得的 *BL*^[21], 后文将对该公式进行讨论; 图 2(b) 是根据噪声垂直空间指向性利用 OASN 模 块仿真得到的 *BL*;图 2(c) 提取出了 1800 Hz 下两 种方法的掠射角 *BL* 曲线.图 2(a) 和图 2(b) 中的 条纹与图 2(c) 中的曲线峰值成对应关系, 阵元遍 布全海深的理想状态下,图 2(c)中两条曲线的峰 值一一对应,仅在幅度上存在一定偏差,因此利用 Harrison 能流理论估计海底反射损失是可行的.

图 2 (a) 真实反射损失 *BL*; (b) 根据噪声垂直空间指向 性利用 OASN 模块仿真得到的 *BL*; (c) 1800 Hz 下两种方 法的比较, 实线为 *BL*, 虚线为 *BL*

Fig. 2. (a) True BL; (b) \widehat{BL} computed by vertical directionality of ocean ambient noise using OASN; (c) two methods compare under 1800 Hz, the full line is BL, the imaginary line is \widehat{BL} .

而在实际海上试验中, 阵元个数是有限的, 很 难达到上述遍布全海深的理想状态. 有限的阵元个 数会带来不同掠射角方向分辨率的下降, 这样会导 致图 2(b) 中条纹信息一定程度上的缺失, 同时也 使图 2(c) 中峰值的模糊, 但仍然有很多特征可以利用.图 3 给出了两种不同海底分层结构的 *BL*, 保留表 1 中的参数, 图中实线为间隔 0.2 m 的水听器遍布全海深的结果, 虚线为间隔 0.2 m 的 42 元 水听器阵, 第一个阵元设置在水深 30 m 处, 频率均为 1800 Hz.海底模型如图 4 所示, 其中图 4(a) 为无限大液态声学半空间海底, 图 4(b) 为带有一层沉积层的海底.

图 3 1800 Hz 下不同海底分层结构下的 \widehat{BL} (实线为阵元 遍布全海深, 点划线为 42 阵元, 间隔均为 0.2 m) (a) 海底 为无限大液体声学半空间; (b) 海底为单层沉积层

Fig. 3. The \widehat{BL} of different structure of sub-bottom under 1800 Hz: (a) Infinite acoustic half space; (b) 1 layer of sediment. The full line corresponds to the condition that the elements set across the sea. The imaginary line corresponds to the condition that 42 elements set at the depth of 30 m.

当海底不存在沉积层时, *BL*曲线中只存在一 次突变,即存在一处临界角,介质中仅存在一层分 界面,小掠射角时会发生全内反射,而当掠射角大 于临界角时,发生折射,能量泄漏传播到海底,导 致*BL*突增;而存在一层沉积层时,介质中有两个 分界面,在每层介质物理性质差异明显的情况下, 会产生两个临界角,这是由于当掠射角略微大于第

一个临界角时, 折射到沉积层中的声线会发生偏转, 通常情况下下层介质声速大于上层介质声速, 声线会向上偏转, 使得声波在沉积层中的掠射角变 小, 而随着入射波的掠射角再次增大, 折射波的掠 射角会达到第二个临界角, 因此图 3(b) 中会存在 两次幅度上的突变, 而三层及多层海底结构复杂, 会引起第二个临界角不明显, 本文不予考虑. 可以 看出, 利用噪声垂直方向谱获得的 *BL* 曲线可以用 来估计海底的分层结构.

3 不同方向噪声对BL曲线影响分析

在浅海波导中, 点声源在大掠射角范围内发出 的声波很难进行远距离传播, 因为这一部分经过海 底反射存在能量损失, 反射波携带着一定海底信 息, 这一特性对于均匀分布在表面的噪声源同样适 用. 在分层介质中, 点源声场的波函数的积分表达 式为

$$p(r,z) = \frac{1}{2} \int_{-\infty}^{\infty} G(z_1, z_0, k_r) \operatorname{H}_0^{(1)}(k_r r) k_r \mathrm{d}k_r, \quad (4)$$

式中 $H_0^{(1)}$ 为0阶第一类 Bessel 函数. 该式可以利用 积分的闭合围线留数定理求解,回路积分等于回路 所围的极点留数之和以及绕分支割线上下岸的积 分.本文选用 Pekeris 割线方法进行简单说明,如 图 5 所示. k_1 , k_2 两点将 k_r 的正轴分为三个部分, 当0 < k_r < k_2 时, k_r 解为复数,此谱域内声波辐射 到海底,存在声能泄漏,称为连续谱. 当 k_2 < k_r < k_1 时, k_r 解为实数,这部分谱含有离散极点, 相应的模式为无损模式,称为离散谱.

为了描述准确,这一部分在 K/I 模型下进行 讨论^[2]. Kuperman 给出海面噪声源均匀情况下噪

图 5 Pekeris 分支割线、极点和积分的复波数平面 Fig. 5. Pekeris branch cut map.

声互谱密度的波数积分表达式

$$C_{\omega}(r, z_1, z_2) = \frac{8\pi^2 p q^2}{k^{2p}} \int_0^k \left(k^2 - k_r^2\right)^{p-1} \times g\left(k_r, z_1, z'\right) g^*\left(k_r, z_2, z'\right) \mathbf{J}_0\left(k_r r\right) k_r \mathbf{d}k_r, \quad (5)$$

和简正波表达式

$$C_{\omega}\left(r, z_{1}, z_{2}\right)$$

$$= \frac{\pi q^{2}}{2\rho^{2}k^{2}} \sum_{m} \frac{\left[\Psi_{m}\left(z'\right)\right]^{2} \Psi_{m}\left(z_{1}\right) \Psi_{m}\left(z_{2}\right) \mathbf{J}_{0}\left(\kappa_{m}r\right)}{\alpha_{m}\kappa_{m}},$$
(6)

式中 g为点源格林函数, Ψ_m 为模式函数. 由于接收 器为垂直阵, 式中 r = 0. 对于近场连续谱部分采 用 (5) 式波数积分表达式进行计算, 而远场离散谱 部分则采用 (6) 式简正波表达式, 将其分别代入 (3) 式中求得不同谱域内的 \widehat{BL} . 图 6 给出了无限 大液态声学半空间海底情况下, 不同谱域内噪声场 的垂直指向性和对应的 \widehat{BL} , 图 6 (a) 和图 6 (b) 是 利用 (5) 式计算近场连续谱部分, 即 0 < $k_r < k_2$, 这一部分的贡献主要来自大掠射角, 其对应的是大 于临界角的部分, 而这部分经过海底后存在能量泄

图 6 不同谱域内噪声场的指向性和 \widehat{BL} (a), (b) 连续谱部分噪声场; (c), (d) 离散谱部分噪声场; (e), (f) 全谱域噪声场 Fig. 6. Vertical directivity and \widehat{BL} of ocean ambient noise in different spectral domain: (a), (b) Near field continuous spectrum; (c), (d) far field discrete spectrum; (e), (f) full spectrum domain.

漏,返回到接收器阵的声波可以表达出海底反射的 信息;图 6(c)和图 6(d)是(6)式计算得到的远场 离散谱部分,此时 k₂ < k_r < k₁,其贡献主要来自于 小掠射角,对应小于临界角的部分,这一角度内发 生全内反射,海底没有声能吸收,对 *BL*的大掠射 角条纹部分没有贡献;图 6(e)和图 6 (f)为全谱域 结果,*BL*与仅考虑近场条件下的*BL*基本一致.在 近场条件下大掠射角部分反射损失较高,所以本文 不考虑多次海底反射的情况.

4 BL 曲线条纹结构产生机理及海底 参数估计

4.1 不同海底参数对无沉积层 BL 的影响

前文中介绍了利用噪声获得 BL 的有效性, 而 有限阵元带来的影响尚不能明确, 因此从理想反射 系数出发, 来解释这一过程. 首先考虑图 4(a) 中的 无限大液态声学半空间海底模型. 影响 *BL*的海底地声参数有 3 个,分别是海底 衰减系数 α、声速 *c* 和密度 ρ. 图 7 别为不同海底 参数下的 *BL*. 由图 7(a) 可见, α仅在掠射角小于 临界角 θ_c时,对 *BL* 有影响,在建立浅海远程传播 模型中起到了至关重要的作用^[21]. 但第 3 节中,通 过对近场连续谱和远场离散谱的分解已经证明: 噪 声估计的 *BL*主要来自于近场连续谱的贡献,在近 场条件下,衰减系数 α 又是一个不敏感参数,因此 可以忽略衰减系数 α 带来的影响.在分界面上掠射

图 7 不同海底参数下的 *BL* (a) 衰减系数 α; (b) 声速 *c*; (c) 密度 ρ

Fig. 7. The BL under different parameters of sub-bottom: (a) Attenuation coefficient α ; (b) sound speed c; (c) density ρ .

角 θ_1 , θ_2 利用 Snell 定律建立关系

$$k_1 \cos\theta_1 = k_2 \cos\theta_2,\tag{7}$$

透射波水平射出, 即 $\theta_2 = 0^\circ$ 时存在临界角效应, 此时, $\cos\theta_1 = c_1/c_2$, 在海水声速 c_1 已知的情况下, 反射系数的临界角 θ_1 完全由 c_2 决定. 除此之外, 海底声速对于反射系数的幅度也有一定影响. 图 7(b)为不同海底声速下的 *BL*. 海底密度 ρ 仅对 *BL*的幅值起到影响, 与临界角不存在任何关系, 如图 7(c).

4.2 单层沉积层 BL条纹结构产生机理

下面考虑存在一层沉积层时的反射情况,反射 系数的表达式为

$$R = \frac{R_{12} + R_{23} \exp(2j\varphi)}{1 + R_{12}R_{23} \exp(2j\varphi)},$$
(8)

其中, R_{12} , R_{23} 分别为两个分界面上的反射系数, $\varphi = k_2 h \sin \theta_2$ 表示声波穿过沉积层的垂直相移. (8)式的分子和分母中均含有 exp (2j φ)一项, 难以 讨论其各个参数对 R 的影响, 特别是图 2 反射系 数中影响条纹的因素, 为了让各个参数在两式中的 作用明显表达, 需要对其进行一定程度上的化简, 下面从单一沉积层的反射模型开始考虑, 如图 8.

图 8 单层沉积层海底反射模型

Fig. 8. Reflection model of sub-bottom with 1 layer of sediment.

声波在沉积层中传播, 会形成多次返回海水中 的反射波, 反射系数的原始表达为各个反射波的 叠加

$$R = R_{12} + T_{12}R_{23}T_{21}\exp\left(2j\varphi\right)$$

$$+ T_{12}R_{23}^2R_{21}T_{21}\exp(4j\varphi) + \cdots, \qquad (9)$$

式中, *T*₁₂表示海水进入沉积层的透射系数, *T*₂₁代 表沉积层进入海水中的透射系数. 近场条件中, 海 面风成噪声源源级较低, 可忽略海底多次反射后返 回海水中反射波带来的影响, 仅考虑图 8 中前两条 返回声线, 这种情况下反射系数化简为

$$R = R_{12} + T_{12}R_{23}T_{21}\exp(2j\varphi).$$
 (10)

与(8)式相比,(10)式非常简洁,便于讨论不同参数与R的对应关系.图9分别为(8)和(10)两式计算的海底反射损失 BL和1800 Hz下的BL曲线,依然沿用表1中参数.从图9可以看出,两式计算的结果基本一致,仅在幅值上存在细微差异.从级数的角度解释,大掠射角近场条件下,R为一纯小数,(9)式中第三项之后均为第二项的高阶小量,因此仅在幅值上存在一定影响.综上,可以利用(10)式化简后的反射系数R代替(8)式,对单层沉积层海底反射进行讨论.

用 θ_{c1} 和 θ_{c2} 表示两个临界角,当掠射角 $\theta < \theta_{c1}$ 时,没有透射波,(10)式仅存在 R_{12} 一项,此时 R为模近似1的复数;当 $\theta_{c1} < \theta < \theta_{c2}$ 时,(10)式 中 R_{12} , T_{12} , T_{21} 均为实数, R_{23} 为模近似1的复数, R_{12} 为随 θ 单调递增的负数,其模单调递减, $T_{12} =$ 1 + R_{12} 为正且单调递增, T_{21} 同理,因此对于此部 分振荡完全由 exp $(2j\varphi)$ 一项引起;当 $\theta > \theta_{c2}$ 时, (10) 式中除 exp $(2j\varphi)$ 一项以外均为随 θ 单调改变的 实数,其本身不存在极值点,因此这一部分与 $\theta_{c1} < \theta < \theta_{c2}$ 时一样, *BL* 曲线中的振荡均由 exp $(2j\varphi)$ 一项引起.在计算 *BL* 过程中,取 *R* 的模,所以 exp $(2j\varphi)$ 项中仅有实部对 *BL* 曲线有贡献,其实部 通过 Euler 公式可知

$$\cos\left(2\varphi\right) = \cos\left(2k_2h\sin\theta_2\right),\tag{11}$$

因此 BL 曲线中的振荡由声速和沉积层厚度 h 共同决定. 在海底声速确定的情况下, 对于某一掠射角 θ_0 , BL 曲线对于频率 f 的振荡周期可由 (11) 式确定, 把频率 f 看作变量, (11) 式表示为

$$\cos\left(2\pi \cdot \frac{2h\sin\theta_2}{c_2} \cdot f\right),\tag{12}$$

其振荡周期为 $c_2/2h\sin\theta_2$,在某一频率 f_c 范围内振 荡次数为 $2h\sin\theta_2/c_2 \cdot f_c$,振荡次数即 *BL* 的极值点 数,这与图 9(a) 和图 9(b) 中 *BL* 的条纹个数是对 应的.

根据互易原理,可以看作不同距离的表面噪声

图 9 (a) (8) 式计算的真实 BL; (b) (10) 式计算化简后的 BL; (c) 1800 Hz 下两条 BL 曲线

Fig. 9. (a) True BL computed by equation (8); (b) BL after simplified computed by equation (10); (c) the curves of BL of two methods under 1800 Hz.

源到达同一接收点的路径,图 8 中前两条反射声线 看作入射声线,原来的入射声线看作汇聚后的出射 声线.两条入射声线的相位差等于声线在沉积层中 走过路线的相位变化,即垂直相位变化2φ.在相位 相差2π的整数倍时发生相长干涉,

$$2\varphi = 2k_2h = 2\pi n,$$

 $f_0 = \frac{c_2n}{2h\sin\theta_2}, \ n = 1, 2, 3, \cdots,$ (13)

(13) 式 *f*₀即为 (12) 式中 *f* 的峰值点, 与其振荡周 期相对应, 同样也解释了图 9 中 *BL* 条纹的形成机理.

而在某一频率确定的情况下, (12) 式中 $\sin\theta_2$ 可用 (7) 式确定, 把 $\sin\theta_2$ 作为变量, (12) 式的振荡 周期为 $c_2/(2fh)$, 从图 10 可以看出 BL 在大掠射 角范围内关于 $\sin\theta_2$ 均匀振荡.

图 10 (10) 式计算化简后的 *BL* (横轴利用 (7) 式转为 $\sin\theta_2$) Fig. 10. Curve of *BL* after simplified computed by equation (10) with the horizontal axis converted to $\sin\theta_2$ by equation (7).

4.3 利用海洋环境噪声获得的 *BL*估计海底地声参数

BL 曲线的临界角效应和周期振荡这两种特征 可以分别用来确定单沉积层海底的分层声速和沉 积层深度.在利用噪声获得 BL 时,由于阵元的个 数限制,会引起 BL条纹的模糊,图 11(a) 仿真了 42 阵元,第一阵元设置在 30 m 处的 BL,其他参 数依旧沿用表 1,与图 2 阵元遍布全海深的 BL 相 比,条纹显得模糊很多.图 11(b) 单独提取出了 1800 Hz 下的 BL 曲线,该曲线中依然可以看到较 为明显的临界角信息,即幅值发生跃变的点,通过 两处临界角 θ_{c1}, θ_{c2}可以利用上文所述的 Snell 定 律,在折射角为 0 时确定沉积层声速

$$c_2 = \frac{c_1}{\cos\theta_{\rm c1}} \tag{14}$$

和基底声速

$$c_3 = \frac{c_1}{\cos\theta_{\rm c2}}.\tag{15}$$

而在 θ_{c2} 后,存在一个明显"凸点",这个"凸点" 不一定是这条曲线本身的极值点,但实际上对应的 是理想情况下反射损失 *BL*的一个极值点,由于有 限阵元带来的模糊,使得这个极值点变为了"凸 点".假设"凸点"的位置对应为 θ_t ,那么利用 θ_t 与 θ_{c2} 便可以得到 (12)式在某一固定频率下关于 sin θ_2 的半周期

$$\sin\left[\arccos\left(\frac{c_2}{c_1}\cos\theta_t\right)\right] - \sin\left[\arccos\left(\frac{c_2}{c_1}\cos\theta_{c_2}\right)\right]$$
$$= \frac{1}{2} \cdot \frac{c_2}{2fh},$$
(16)

从而可以估计出沉积层厚度 \hat{h} ,

$$h = \frac{1}{4f\left\{\sin\left[\arccos\left(\frac{c_2}{c_1}\cos\theta_t\right)\right] - \sin\left[\arccos\left(\frac{c_2}{c_1}\cos\theta_{c_2}\right)\right]\right\}}.$$
(17)

 C_{2}

图 11 (a) 42 阵元设置在水下 30 m 处 \widehat{BL} ; (b) 1800 Hz 下 \widehat{BL} 曲线

Fig. 11. (a) \widehat{BL} with 42 elements at the depth of 30 m; (b) the curve of \widehat{BL} under 1800 Hz. 从图 11(b) 可以看出, θ_t约为 46°, θ_{c2}约为 41°, 利用 (17) 式估计出沉积层厚度 ĥ 约为 2.84 m, 与实际仿真设置的 3 m 相比偏小, 这是因为有限 阵元带来的模糊, 即空间采样点不足导致 *BL* 曲线 中的极值点之间的分辨率下降. 也可以利用理论阵 元合成的方法对噪声的互谱密度矩阵进行扩展, 以 提高 *BL* 曲线的分辨率^[17,18].

5 利用噪声能流理论获取海底参数 海上试验验证

实验数据于 2016 年 12 月在中国黄海某海区 采集,当地实际水深 35 m,冬季海水近似看作等声 速,声速为 1487 m/s,实测声速剖面如图 12 所示. 实验采用阵元间隔为 0.2 m 的 25 元船挂阵采集噪 声数据,将实测数据分为 20 组,每组时长 5 min, 对每组数据分别进行处理.图 13 和图 14 分别给出 了第 9 组和第 11 组数据处理结果,1600 Hz 下两 图的 *BL*曲线中明显存在两次突变,因此存在两个临界角,符合单层沉积层海底模型,可以利用上文 所述的方法对海底分层结构及地声参数进行估计. 图中已标注出 *θ*_{c1},*θ*_{c2},*θ*_t的位置,*θ*_{c1},*θ*_{c2}的选取依 据主要是根据 *BL*曲线中幅值突变的程度,选取其 突变的初始角度,*θ*_t选取的是*θ*_{c2}后的第一个"凸

图 13 第9组数据处理结果 (a) \widehat{BL} ; (b) 1600 Hz下的 \widehat{BL} 曲线 Fig. 13. Results of the 9th set of data: (a) \widehat{BL} ; (b) curve of \widehat{BL} under 1600 Hz.

点",然后利用 (14), (15), (17) 三式对该海区海底 声速和沉积层厚度进行估计.图 15为20组数据计 算结果的统计分布直方图,其中图 15(a)为沉积层 声速,图 15(b)为基底声速,图 15(c)为沉积层厚 度.沉积层声速的估计平均值为 1544 m/s,这与同 海区的反演结果 1531 m/s 相近^[22];基底声速的估 计平均值为 1935 m/s,相比沉积层声速其波动范 围略大,主要集中在 1900—1960 m/s 之间,目前 暂无其他方法对这一结果进行对比;沉积层厚度的

图 15 数据计算结果统计分布直方图 (a) 沉积层声速; (b) 基底声速; (c) 沉积层厚度

Fig. 15. Statistical distribution histogram of 20 sets of data: (a) Sound speed of the sediment; (b) sound speed of the basement; (c) thickness of the sediment. 估计平均值为2m,考虑到有限阵元带来的模糊影响,实际沉积层厚度可能略高于估计值.

为验证所估计沉积层厚度的可靠性,试验船搭载了浅地层剖面仪 (sub-bottom profiler),该地层 剖面仪发射调频信号,利用声波在水中和水下沉积 层内传播和反射的特性来探测海底地层结构.图16 给出了从试验点向东北方向扫描的海底地形,35 m 深处为海底表层,在其下方存在沉积层,图16(b) 中用黑色标出,厚度约为2.2 m,噪声估计出的沉 积层厚度与此结果基本符合.

图 16 浅地层剖面仪探测试验海区海底结构 (图 (b) 中用 黑点标明海底分界面)

Fig. 16. Sub-bottom structure of the experimental area detected by sub-bottom profiler. The interface is marked by black spot in panel (b).

6 结 论

本文根据 Harrison 能流理论, 假设噪声源均 匀分布在海面, 利用垂直阵接收的海洋环境噪声数 据对海底反射损失进行估计, 讨论了无限大液体声 学半空间海底和存在一层沉积层两种情况的 *BL*曲 线特点, 并将近场连续谱和远场离散谱两部分的贡 献分开考虑, 从理想反射系数出发, 推导了各个海 底参数对 BL 的影响.

结果表明,当海底不存在沉积层时, \widehat{BL} 曲线 中仅存在一处幅度突变点,即一个临界角,而存在 一层沉积层时,由于有两个分界面,所以产生了两 个临界角;远场离散谱部分对 BL 几乎没有任何贡 献,主要由近场连续谱部分反映处海底信息;不同 参数对理想反射系数影响的研究表明,沉积层声速 已知的情况下, BL 曲线中的振荡主要由沉积层厚 度 h 决定,利用互易原理两条入射声线会发生相长 干涉,也同样解释了 BL 条纹的形成机理.利用 BL 曲线中的临界角信息可以分别对沉积层声速、基底 声速进行估计, 而利用"凸点" θ_t与第二个临界角 θ_{c2} 可以确定 \widehat{BL} 曲线在某一频率下关于 $\sin\theta_2$ 的振 荡的周期,从而估计出沉积层的深度,由于有限阵 元个数带来的模糊影响,这一估计出的结果可能会 略小于实际值. 实测海洋环境噪声数据处理结果表 明,利用该方法估计得到的沉积层声速与海底沉积 层厚度的结果可信度较高.

参考文献

- [1] Wenz G M 1962 J. Acoust. Soc. Am. **34** 1936
- [2] Kuperman W A, Ingenito F 1980 J. Acoust. Soc. Am. 67 1988
- [3] HarrisonC H 1996 J. Acoust. Soc. Am. 99 2055
- [4] Lin J H 2002 Ph. D. Dissertation (Beijing: Graduate University of Chinese Academy of Science) (in Chinese) [林建恒 2002 博 士学位论文 (北京: 中国科学院研究生院)]
- [5] Zhang Q C 2017 Ph. D. Dissertation (Beijing: University of Chinese Academy of Science) (in Chinese) [张乾初 2017 博士 学位论文 (北京: 中国科学院大学)]
- [6] Guo X Y, Tie G P, Li F, Ma L 2014 *Physics* 43 723 (in Chinese) [郭新毅, 铁广鹏, 李凡, 马力 2014 物理 43 723]
- [7] Jiang P F, Lin J H, Sun J P, Yi X J 2017 Acta Phys. Sin. 66 014306 (in Chinese) [江鹏飞,林建恒,孙军平,衣雪娟 2017 物

理学报 66 014306]

- [8] Jiang G Y, Sun C, Xie L, Liu X H 2019 Acta Phys. Sin. 68 024302 (in Chinese) [将光禹, 孙超, 谢磊, 刘雄厚 2019 物理学 报 68 024302]
- [9] Zeng J, Chapman N R, Bonnel J 2013 J. Acoust. Soc. Am. 134 EL394
- [10] Li M Z, Li Z L, Zhou J X, Zhang R H 2019 Acta Phys. Sin.
 68 094301 (in Chinese) [李梦竹, 李整林, 周纪浔, 张仁和 2019 物理学报 68 094301]
- [11] Zhou J B, Piao S C, Liu Y Q, Zhang H G, Qu K, Li X M, Zhang M H 2019 Acta Acoust. 44 337 (in Chinese) [周建波, 朴胜春, 刘亚琴, 张海刚, 屈科, 李晓曼, 张明辉 2019 声学学报 44 337]
- [12] Jiang P F, Lin J H, Ma Li, Yin B Y, Jiang G J 2016 Acta Acoust. 41 59 (in Chinese) [江鹏飞, 林建恒, 马力, 殷宝友, 蒋 国建 2016 声学学报 41 59]
- [13] Luo W Y 2002 Ph. D. Dissertation (Beijing: Institute of Acoustics, Chinese Academy of Science) (in Chinese) (in Chinese) [骆文于 2002 博士学位论文 (北京: 中国科学院声学研 究所)]
- [14] Бреховских Л M (translated by Department of Oceanophysics Shandong College of Oceanology, Laboratory of Underwater Acoustic Institute of Acoustics Chinese Academy of Science) 1983 Fundamentals of Ocean Acoustics (Beijing: Science Press) pp516-520 (in Chinese) [布列霍夫斯基Л M 著 (山东省 海洋学院海洋物理系,中国科学院声学研究所水声研究室 译) 1983 海洋声学 (北京:科学出版社) 第516—520页]
- [15] Harrison C H, Simons D G 2002 J. Acoust. Soc. Am. 112 1377
- [16] Harrison C H 2004 J. Acoust. Soc. Am. 115 1505
- [17] Siderius M, Harrison C H, Porter M B 2006 J. Acoust. Soc. Am. 120 1315
- [18] Muzi L, Siderius M, Quijano J E, Dosso S E 2015 J. Acoust. Soc. Am. 137 481
- [19] Muzi L, Siderius M, Nielsen P L 2016 J. Acoust. Soc. Am. 140 1513
- [20] Schmidt H 2004 OASES version 3.1 User Guide and Reference Manual (Cambridge, MA: Massachusetts Institute of Technology)
- [21] Jensen F B, KupermanW A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (New York: Springer) pp38–43
- [22] Zeng J, Zhao Z D, Peng D Y, Ma L, Shang E C 2019 J. Acoust. Soc. Am. 145 EL243

Estimating structure and geoacoustic parameters of sub-bottom by using spatial characteristics of ocean ambient noise in shallow water^{*}

Li He $^{1)2)}$ Guo Xin-Yi $^{1)\dagger}$ Ma Li $^{1)}$

1) (Key Laboratory of Underwater Acoustics Environment, Institute of Acoustics, Chinese Academy of Science, Beijing 100190, China)

2) (University of Chinese Academy of Science, Beijing 100049, China)
(Received 28 May 2019; revised manuscript received 13 August 2019)

Abstract

The field of ocean ambient noise contains numerous information about the water column, especially the information about the sub-bottom. The geoacoustics parameters of sub-bottom are very important factors influencing the spatial characteristics of ocean ambient noise field. For different layered structures of the subbottom, the bottom-loss shows different critical angles according to sound speed of each layer, while the structure of interference fringe is dependent on the thickness of the sediment. Flux theory of ocean ambient noise proposed by Harrison is used in this paper. Using this theory, the curve of bottom-loss can be extracted by computing the ratio between the energy of the upward wave and the downward wave. From the ideal reflection coefficient, the influence of sound speed, density and attenuation coefficient on reflection coefficient are discussed in the situation of the sub-bottom of acoustic half space, while the reflection coefficient of 1 layer of sediment is simplified. Initially, the reflection coefficient is the sum of sound waves reflect from the subbottom transmitted from the same source at the same angle. Only the first two terms are reserved, so that the mechanism of the interference fringe can be easily discussed. The structure of interference fringe can be explained which is affected by the thickness of the sediment. The curve of bottom-loss oscillates periodically with the increase of the thickness of the sub-bottom. Also by the reciprocity principle, the interference fringe of the reflection coefficient can be explained by considering the sound transmitted from two point sources at the surface of the sea. In this way the same result can be obtained as that from the method of simplification. The result of the experiment in China Yellow Sea shows that the information about the reflection coefficient of the sub-bottom can be extracted by the vertical azimuth spectrum of ocean ambient noise. In this way, the critical angle can be obtained, so that the sound speed of the sub-bottom can be estimated by using Snell law. The structure of the interference fringe is also contained in the bottom-loss curve estimated by ocean ambient noise. Therefore the layered structure, sound speed and the thickness of the layer of the sub-bottom can be estimated.

Keywords: spatial characteristics of ocean ambient noise, bottom-loss, estimating geoacoustics parameters of sub-bottom

PACS: 43.30.Nb, 43.30.Pc

DOI: 10.7498/aps.68.20190824

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 11874384).

[†] Corresponding author. E-mail: guoxinyi@mail.ioa.ac.cn